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Chengdu 610066, People’s Republic of China 

Received 6 September 1989, in final form 25 October 1989 

Abstract. The one-dimensional ( I D )  Heisenberg X X Z  magnetic chain with isolated 
impurities is presented as a new completely integrable system. This system includes the 
I D  Heisenberg X X Z  model and the I D  Heisenberg X X X  magnetic chain with isolated 
impurities as special limiting cases. The model Hamiltonian is diagonalised, and the 
algebraic Bethe ansatz equations are derived. This makes it possible to investigate the 
equilibrium thermodynamics of the system. 

1. Introduction 

In the last decade, considerable progress has been made in the study of the theory of 
quantum completely integrable systems. At present, a number of completely integrable 
systems in (1 + 1)-dimensional quantum field theories and in two-dimensional ( 2 ~ )  
lattice statistical mechanics are known which are soluble by means of the Bethe ansatz 
method (BA)  (Bethe 1931, Lieb and Liniger 1963, Yang 1967, Belavin 1979, Wiegmann 
1980, Andrei et al 1983 and references therein) or the quantum inverse scattering 
method (QISM) (Thacker 1981, Izergin and Korepin 1982, Kulish and Sklyanin 1982). 
Among these systems, lattice spin models have received much attention for their 
relevance to the low-dimensional condensed matter theory. On the other hand, they 
have often served as prototypes for the study of other quantum integrable systems. A 
recent remarkable example is the demonstration of integrability of the principal field 
model in two dimensions (Faddeev and Reshetikhin 1985). 

In this paper we present a new completely integrable system describing the interac- 
tion of the usual Heisenberg X X Z  magnetic chain with isolated impurities. Our model 
includes some physically interesting models as special limiting cases, such as the I D  
Heisenberg XXZ model and the I D  isotropic magnetic chain with impurities recently 
proposed by Andrei and Johannesson (1984). In the latter case, the Lax pair has been 
constructed by us in a recent work (Zhou and Jiang 1989), which provides a direct 
demonstration for the integrability of the system. 

2. Formulation of the model 

Let us consider the interaction of the Heisenberg X X Z  magnetic chain with an impurity 
located on the mth link (see figure l ) ,  with dynamics determined by the Hamiltonian 

H = HrJ+ H h S ,  (1) 
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V 
( m , S I  Impurity 

Figure 1. Pictorial representation of an isolated impurity interacting with the Heisenberg 
X X Z  magnetic chain. 

where 

and 

cosh[y( 1 + S')/~]((T:+~ + a L ) S -  J sinh2 y 
sinh2[(l+ l )y/2]  HCnI,,, = 

+ ( + a,)S+ cosh[ y (  1 + S')/2] 

cosh y 

2 sinh y 
i- (ut+, +a',) sinh(yS')+a~+,a~S-S-+o~+,a~S~S' 

cosh y 
sinh y 

+- [sinh[ y(  1 + S z ) / 2 ] ( ~ ~ + , u ' ,  + af+,a+,)S- 

+(a;+,cr',+a',+,a,)S' sinh[y(l +S')/2]] 

[sinh[y(l +S')/2] sinh[y(l -S')/2]-sinh2[(1+l)y/2]] 
1 +- 

sinh2 y 

x (u+m+,Cr,+ am+la;) - 4 sinh2 y 

-cosh y cosh(yS')+2cosh y sinh2[( l+l)y/2]+l]cf+,af  

-! (cosh y+  

- 2 cosh[(l- l)y/2]+coshZ y sinh[(l+ l )y/2]  cosh(yS') 

Here the periodic boundary conditions are assumed. a; = $( uj" * iuj') and a;, aj' , a; 
are the usual Pauli spin operators at lattice site j ,  while the operators S', S -  and S' 
assigned to the impurity satisfy the following commutation relations: 

[sinh2 y (  S'S- + S-S') 

2 sinh Y cosh[(/+ l)Y/21 (s+s-+ s-s+) ) 4 sinh[(l+ 1) y / 2 ]  

1. (3) 4sinh y sinh[(l+l)y/2] 

sinh( yS') 
sinh y * 

[ S', S * ]  = *2s* [ S + ,  s-] = (4) 

Obviously, our model includes the I D  X X Z  model and the I D  X X X  magnetic chain 
with a spin-1/2 impurity as special cases. Note that by assigning spin-; to the impurity 
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site, the Hamiltonian (1) reduces properly to that of the Heisenberg X X Z  model for 
a spin-: chain of N +  1 sites. Also note that by taking a special limit ( y +  O ) ,  the 
Hamiltonian (1) reduces to the form 

H = Ho+ H c m , s )  ( 5 )  

with 

and 

(Um+,+U+, )S -+ (U ,+ l  + a , ) S + + ; ( ( + Z , + , + U Z , ) S Z + ( + ~ + , U ~ S - S -  
H ( m , s ) = - {  45 + 

( I +  1 ) 2  

I f s s -  + U,+,U;S+S+ + (U+,+,Uz, + Uz,+,Uf,) - 
2 

- f [ 1 ( 1 + 2 )  - (s ’ )2 ]U;+ ,U: ,  I (7)  

which is nothing but the Hamiltonian describing the interaction of a spin-ll:! impurity 
with an isotropic Heisenberg chain (Andrei and Johannesson 1984). 

The coupling constants between sites m, (m ,  S) and m + 1 in H(m,s, have been 
chosen to assure the integrability of the model. Indeed, the Hamiltonian ( I )  may be 
related to a class of commuting transfer matrices ~ ( h )  via the so-called Baxter-Luscher 
relation: 

In our case, ~ ( h )  may be constructed as follows 

~ ( h )  = tr[LE’”(A) . . . L2$2,)(A)L(”2) cm,s,(A)L2’2)(A). . . L\”2)(A)] 

with 

and 

( 1 1 )  

sinh(A + y y) sinh y S -  i sinh $3’ sinh(A + y y) 1 
sinh(A + ; ( I +  1)y)  

LiX,2)(A) = 



2110 I D  Heisenberg X X Z  magnetic chain with isolated impurities 

It must be noticed that Lil’*)(A) and L{!!&(A) satisfy the Yang-Baxter relations 
(Faddeev and Reshetikhin 1985, Kirillov and Reshetikhin 1987) 

R(A  -~)L:’”’(A)OL:’’”(~L) = L~”” ( ~ ) O L ; ’ / ’ ) ( A ) R ( A  - p )  

R ( A - p ) L: !/,:&( A ) o L; !$ I (  p ) = L; 

sinh(A - p + y )  0 0 0 
0 sinh y sinh( A - p )  0 
0 sinh(A - p )  sinh y 0 

(12) 
) o L! A ) R ( A - p ) 

with 

(13) i* 0 0 0 sinh(h - p + y )  

( A @  B)zk,,i = A,,Bki 

Here by 0 we mean the matrix direct product, 
i R ( h - p ) =  

whence the commutativity of the transfer matrices for different values of the spectral 
parameter A immediately follows (Kulish and Sklyanin 1982, Andrei and Johannesson 
1984). 

To close this section we give some formulae about the operators S’, S - ,  and S’ 
which have been used in the derivation of (8): 

(14) 

(15) 

(16) 

s’ = e F 2 a  e”s:S’ 

S’ cosh( a + PS’)  = cosh( a F 2P + PS’)S* 

sinh( a + pS‘)S* = S’ sinh( a * 2p + pS’)  

cosh( a + pS’)S’ = S” cosh( a * 2p + P S ” )  

S*sinh( a + PS’)  = sinh( a 2P + PS’)S* 

y( 1 F S‘) y(  1 * S ” )  
2 .  

S’ = -S* sinh 
2 

sinh 

3. Algebraic Bethe ansatz equations 

Let us now turn our attention to the diagonalisation of the model Hamiltonian (1). 
This can be done by using the algebraic Bethe ansatz method initially formulated by 
Faddeev, Korepin, Sklyanin and their collaborators (Faddeev 1980, Izergin and 
Korepin 1982, Kulish and Sklyanin 1982, de Vega and Lopes 1987, Zhou et a1 1989). 
For our purpose, it is convenient to introduce a monodromy matrix 

T ( h )  = L!$*)(A).  . . LZL2/(A)L\”*) m , s , ( ~ ) ~ : / 2 ) ( ~ ) .  . . L \ ~ ’ ~ ) ( A )  

whose trace is the transfer matrix 7 ( A )  = trT(A). From (12), it follows that 

R( A - p T(A  ) O T (  p ) = T ( p  ) 0 T (  A ) R (  A - p ) .  (19) 
Hence, representing the monodromy matrix as 
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and equating the corresponding elements on both sides of (19), we have 

[A(A), = [ B ( A ) ,  B(IL)I = [C(A), C(IL)I = [ W A ) ,  ~ ( I L ) ]  = O  

These commutation relations provide a basis for finding the exact eigenvalues and 
eigenvectors of the Hamiltonian (1). As usual we introduce a pseudovacuum state 
defined by 

Using T ( A )  on this state, we have 

A(A 110) = 10) 

sinh(A+i( l - l )y)  
10) sinh(A + f (  1 + /) y )  

C ( A ) l O ) = O .  

Evidently, we may consider B ( A )  and C(A) as creation and annihilation operators 
respectively for elementary excitations over the pseudovacuum IO). Thus, one may 
seek for eigenstates of the transfer matrix ~ ( h )  of the form 

M 

In) = n B(Ai)IO)* (24) 
i = l  

From the commutation relations (21), it follows that 
M 

A(A)IR)=A+(A; A l , .  . . , A~)ln)+ & ( A ;  A , ,  . . . , AM)IR(i)) ( 2 5 )  
i = l  

M 

sinh( A i  - Aj - y )  n sinh y 
A , ( A ; A l ,  . . . ,  A M ) = =  

sinh(A - A r )  j + i  sinh(Ai - A j )  
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A;(A; A I , .  ., A M )  

sinh(A, - AJ + y )  rI sinh(A,+;(l+l)y) sinh(A - A , ) J t ,  sinh(A,-A,) * 

sinh A,  sinh(A,+$(l- l ) y )  sinh y 

(31) 

(32) 

Thus, )Cl)  is an eigenvector of 7 ( A )  with the eigenvalue 

A(A; A I , .  . . , A M ) = A + ( A ;  A I , .  . , A M ) + A - ( A ;  A I , .  . . , A M )  
provided the following equations hold 

A , + A : = O  i = 1,2 , .  . . , M 

or 
sinh(A,+i(l - I ) y )  sinh(A,-A,-?) 

=-lJ (33) sinh(A,+ sinh A t  y )  ) sinh(A,+;(l+ i ) y )  sinh(A, -A,+  y ) '  

These are nothing but the Bethe ansatz equations. From (8) we see that /C l )  is also an 
eigenstate of the Hamiltonian (1). Since the transfer matrices commute, the eigenvectors 
are A-independent and then the energy eigenvalues can be determined from the 
logarithmic derivative of A(A).  From (8) and (32) we have 

M 1 . .  1 
E = J sinh'y (34) 

I = 1  sinh(A, + y )  sinh A , '  

Finally, we point out that it is convenient to shift the parameters A i  by y/2. Thus, we 
finally get the algebraic Bethe ansatz equations 

sinh(A, - 4 y )  sinh(A, - ly/2) sinh(Ai - A j -  y )  ( sinh(A,+;y) )" sinh(A, + ly/2) j = l  sinh(Ai - Aj + y )  

and the energy eigenvalue 

=-U i = l , 2 , . . * , M  (35) 

4. Conclusion 

So far we have shown that the I D  Heisenberg X X Z  magnetic chain with an isolated 
impurity is completely integrable. Obviously, our results can be readily extended to 
the case of an arbitrary number of isolated impurities. Here, by 'isolated' we mean 
that the following conditions hold: 

ma + 1 S ma+, ( ~ = 1 , 2  , . . . ,  K-1.  
Then, the Hamiltonian reads 

(37) 

with Ho and HC,a,s,) being defined by (2) and (3 ) ,  respectively. The corresponding 
Bethe ansatz equations are 
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with the energy eigenvalue 

1 M 

E = 25 sinh' y 
i = i  cosh 2Ai -cosh y '  

In this case, the correlation of the impurities via the chain does exist and will be seen 
in the Green functions of the system (Andrei and Johannesson 1984, Zhou and Jiang 
1989). The resolution of this problem relies heavily on the solution of the Bethe ansatz 
equations and will be considered elsewhere. 
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